Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Emerg Infect Dis ; 29(7): 1386-1396, 2023 07.
Article in English | MEDLINE | ID: covidwho-20237258

ABSTRACT

Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/ß) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/genetics , Interferon Type I/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Canada/epidemiology , Antibodies, Viral , Spike Glycoprotein, Coronavirus
2.
8th IEEE International Smart Cities Conference, ISC2 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2136379

ABSTRACT

The Virtual Reality (VR) technology is being utilised immensely in recent years for the purposes of demonstration and illustration a variety of prototypes and products especially on the world wide web platform. AquaFlux and Epsilon are two advanced research instruments that were developed by a research group at London South Bank University for medical and cosmetic purposes. These two medical tools have now been marketed in more than 200 organisations globally. However, for users to master and understand comprehensively how these two devices operate they often do require an intensive on-site training which is time-consuming, costly and in some cases like the current era of COVID-19 it becomes essential to offer clients the option of remote learning whether they were nationally or internationally based. Thus, the design of a VR environment that can simulate and envision all features and functionalities of AquaFlux and Epsilon is one of the ultimate solutions. 360-degree VR videos are going to empower users with the required knowledge and provide a broad essential feeling of how AquaFlux and Epsilon instruments function. © 2022 IEEE.

3.
Comput Struct Biotechnol J ; 20: 824-837, 2022.
Article in English | MEDLINE | ID: covidwho-1778073

ABSTRACT

Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.

4.
Aging Dis ; 13(2): 402-422, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1776699

ABSTRACT

In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.

5.
Virus Res ; 315: 198765, 2022 07 02.
Article in English | MEDLINE | ID: covidwho-1768587

ABSTRACT

BACKGROUND: Emergence of new variant of SARS-CoV-2, namely omicron, has posed a global concern because of its high rate of transmissibility and mutations in its genome. Researchers worldwide are trying to understand the evolution and emergence of such variants to understand the mutational cascade events. METHODS: We have considered all omicron genomes (n = 302 genomes) available till 2nd December 2021 in the public repository of GISAID along with representatives of variants of concern (VOC), i.e., alpha, beta, gamma, delta, and omicron; variant of interest (VOI) mu and lambda; and variant under monitoring (VUM). Whole genome-based phylogeny and mutational analysis were performed to understand the evolution of SARS CoV-2 leading to emergence of omicron variant. RESULTS: Whole genome-based phylogeny depicted two phylogroups (PG-I and PG-II) forming variant specific clades except for gamma and VUM GH. Mutational analysis detected 18,261 mutations in the omicron variant, majority of which were non-synonymous mutations in spike (A67, T547K, D614G, H655Y, N679K, P681H, D796Y, N856K, Q954H), followed by RNA dependent RNA polymerase (rdrp) (A1892T, I189V, P314L, K38R, T492I, V57V), ORF6 (M19M) and nucleocapsid protein (RG203KR). CONCLUSION: Delta and omicron have evolutionary diverged into distinct phylogroups and do not share a common ancestry. While, omicron shares common ancestry with VOI lambda and its evolution is mainly derived by the non-synonymous mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL